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Nevertheless, at present there is still a need to reduce
the computational costs of a BEM. Moreover, the straight-In this paper an iterative domain decomposition method for the

solution of Laplace’s equation is described and its effectiveness in forward application of a BEM requires a computational
time-domain computations of nonlinear water waves with a panel effort that depends approximately quadratically on the size
method is investigated. An important aspect of these computations

of the computational domain. This implies that for large-is the varying shape of the free surface. The convergence of the
scale wave problems special numerical techniques areiterative method is fast and leads to a speedup of the computations

in the aforementioned application. The domain decomposition needed. A technique suitable to solve these problems is
method gives a considerable reduction of memory requirements. domain decomposition.
Furthermore, it lends itself naturally for parallel computing. Q 1996 The domain decomposition method that we will describe
Academic Press, Inc.

here consists of a division of the computational domain
into subdomains and of an iterative (coupling) procedure
which generates a sequence of boundary conditions on the1. INTRODUCTION
interfaces between the subdomains. This sequence con-

For the solution of many large-scale problems, advanced verges to conditions corresponding to the solution of the
methods are required to solve problems from mathematical original problem. The solution of the decomposed problem
physics with the existing computational resources. Domain is equal to the solution of the original problem.
decomposition is a widely addressed method to tackle The idea of working with a sequence of boundary condi-
problems with elliptic field equations. tions originates from Schwarz [16]. For a decomposed Pois-

For this reason various kinds of domain decomposition son problem he analyzed the convergence behaviour of
methods have received a lot of attention in the past 10 the solutions generated by a method using overlapping
years. In these methods the elliptic equation is solved using subdomains. Just recently the technique has been applied
subdomains in such a way that the solution in the subdo- to Poisson problems with nonoverlapping subdomains.
mains corresponds with the sought solution of the original Bourgat et al. [3] and Marini and Quarteroni [12] gave a
domain. The efficiency of the method strongly depends on variational formulation of the decomposed problem which
the problem and on the applied numerical method. One could be translated directly into a finite element approach.
property that domain decomposition methods all have in Funaro et al. [7] gave an analysis of an iterative procedure
common is the suitability for parallel computing. A com- for the Poisson problem on rectangular domains and imple-
prehensive impression of ‘‘domain decomposition’’ is pre-

mented it in a spectral collocation method.sented in, e.g., [6].
The contents of this paper is as follows. Section 2 givesHere we present the application of a domain decomposi-

a description of the mathematical and our numerical modeltion method to the computation of propagating nonlinear
for nonlinear water waves. In Section 3 the iterative proce-water waves. A popular method for solving this type of
dure of the domain decomposition method is describedproblem is based on a time marching scheme combined
and in Section 4 it is analyzed for some typical geometricalwith a boundary element method (BEM) for the elliptic
configurations related to nonlinear wave problems. Sectionfield equation (Laplace’s equation for the velocity poten-
5 deals with the implementation of the domain decomposi-tial). These methods are very suitable for this purpose
tion method in the time-domain computation of propagat-because they only require a discretization of the boundary
ing nonlinear water waves. Three examples will be given.of the fluid domain. Compared with field discretization
The first one shows results on efficiency for a problem withmethods, the advantages are a much smaller amount of
an even bottom. The second example shows the applicationgrid points and a natural description of the position of the

free surface which varies in time. to a problem with an underwater bar and the third example
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the free surface in time and because the time-dependence
comes in through the boundary conditions only, the trans-
formation of Laplace’s equation to a boundary integral
equation is very useful. This transformation can be made
using Green’s identity. For points x on the boundary, we
then find

FIG. 1. Definition of the fluid domain and its boundaries. q(x)
2f

f(x) 5 E–­V S­f

­n
(j)G(x; j)

(4)
shows that it is possible to handle large-scale wave prob-

2 f(j)
­G
­n

(x; j)D dVjjj , x [ ­V,
lems with domain decomposition. Finally some conclusions
will be drawn in Section 6.

where G is the Green’s function ln(ux 2 j u)/2f in 2D and
2. MATHEMATICAL MODEL AND 1/(4f ux 2 ju) in 3D. e– denotes the finite part of the integral

NUMERICAL METHOD in the sense of Hadamard. q(x) is the interior angle of ­V
at x; if x is on a smooth part of ­V, q(x) 5 f. See Jaswon

2.1. Description and Symm [10] for an extensive treatment of integral equa-
tions and potential problems.In the mathematical model for nonlinear water waves

In our numerical method the boundary ­V is approxi-considered here, the motion of the water is described by
mated by N panels, each represented by one collocationa potential flow; the water is assumed to be incompressible
point xi situated near the middle of the panel. The methodand inviscid and the flow is irrotational. This so-called
is split into two parts. In the time-dependent part both theclassical water wave problem is described by the field
potential in the collocation points on the free surface andequation
the positions of the collocation points itself are integrated
in time with a fourth-order Runge–Kutta method usingDf 5 0, x [ V, (1)
the dynamic and kinematic boundary conditions. In order
to use the time derivatives in these equations, spatial deriv-for the velocity potential f and the boundary conditions
atives of the potential have to be found from the solution
of Laplace’s equation.

Laplace’s equation is solved by imposing boundary inte-
gral equation (4) in every collocation point xi . The bound-

­f

­t
1

1
2

(=f)2 1 gz 5 2
p
p

Dx
Dt

5 =f 6, x [ ­VFS (2)
ary integral equation is discretized by using higher order
approximations of the boundary shape and for the varia-
tions in f and ­f/­n. It can be represented by

for the free surface and
1
2

f(xi) 5 ON
j51
FC i, j

s
­f

­n
(xj) 1 C i, j

d f(xj)G, i 5 1, ..., N,
­f

­n
5 0, x [ ­VB (3)

where C i, j
s and C i, j

d9 are the so-called source and dipole coef-
ficients, respectively. In the Laplace problem, the free sur-for the bottom. The various boundary parts of the fluid
face represents a Dirichlet boundary since f is known fromdomain V are indicated in Fig. 1 for a two-dimensional
the time integration, the bottom represents a Neumannconfiguration. r indicates the density of water and p is the
boundary because ­f/­n 5 0, and the type of the lateralatmospheric pressure at the free surface; p is usually taken
boundaries depends on the imposed conditions there. Sub-equal to zero. Equation (2) contains the dynamic and kine-
stitution of f for Dirichlet boundaries and ­f/­n for Neu-matic conditions at the free surface describing the wave
mann boundaries results in a systemmotion and (3) describes the impermeability of the bottom.

In order to describe a finite part of the fluid domain
AX 5 Bwhich is of interest, the domain is truncated in the hori-

zontal direction by vertical boundaries and wave generat-
ing or wave absorbing boundary conditions are imposed of N linear equations in exactly N unknowns, which can

be solved using direct methods (e.g., Gaussian elimination)there.
Since the interest is focused mainly on the evolution of or iterative methods (e.g., conjugate gradient type). The
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decompose V into the subdomains V1 and V2 which are
separated by an interface G. To get a unique definition of
the normal derivative on the interface we choose

n 5 n2 5 2n1 , x [ G.

We impose an arbitrary initial Dirichlet condition w on G
for both subdomains. If w equals the exact solution ofFIG. 2. Decomposed computational domain.
Laplace’s equation on the original domain at the interface
location (w 5 fuG), then the solutions f1 and f2 in the

solution yields ­f/­n for the Dirichlet boundaries and f respective subdomains equal the solution f of the original
for the Neumann boundaries. =f can be determined from domain. Also the gradients ­f1/­n and ­f2/­n will then be
­f/­n and the tangential variation of f. continuous over the interface. Because of the uniqueness

The method is based on the work of Romate [14] and of the solution of Laplace’s equation any other Dirichlet
Romate and Zandbergen [15] for the simulation of three- condition on the interface will lead to a discontinuity in
dimensional nonlinear water waves. It has been developed the gradient on the interface. In the same way will any
further by Broeze (see [4, 5]), who also implemented the Neumann condition imposed on the interface and different
two-dimensional method described here. Furthermore, it from c 5 =fuG ? n, lead to a discontinuity in the potential
has led to the development of a two- and a three-dimen- itself over the interface.
sional method for nonlinear wave–ship interactions (see The right boundary conditions are found by generating
Van Daalen [17] and Berkvens [2]). a sequence of boundary conditions such that the disconti-

nuity in the computed variable (­f1/­n uG 2 ­f2/­nuG if2.2. Computational Effort
a Dirichlet condition is imposed and f1uG 2 f2uG for an

Boundary element methods are widely applied tech- imposed Neumann condition) converges to zero. There
niques for the computation of propagating water waves. are different ways to construct such a sequence and the
Advantages in comparison with field discretizations are a procedure which will be used in this paper is the so-called
reduction in the number of discretization points and a D/D-N/N scheme:
straightforward description of the free surface. Computa-

0. Choose an initial Dirichlet condition w(k), k 5 0.tional efforts are, however, shifted towards high computa-
1. Solve Df(k)

1 5 0 in V1 and Df(k)
2 5 0 in V2 withtional costs in determining the source and dipole coeffi-

Dirichlet condition f(k)
1 5 f(k)

2 5 w(k) on G. This yieldscients and solving a system of linear equations whose
­f(k)

1 /­n and ­f2
(k)/­n (D/D).representing matrix is full. The required computation time

is approximately quadratic in the number of collocation 2. Generate a Neumann condition c(k) by taking a
points of which a big part is consumed by the determination weighted average of the computed solutions:
of the influence coefficients. But also the solution of the
system of equations becomes more difficult as the number

c(k) 5 g(k)
N

­f(k)
1

­n
1 (1 2 g(k)

N )
­f(k)

2

­n
on G.of collocation points increases. In a time-domain simula-

tion these expensive computations have to be made every
time-step. Another problem is the size of required memory 3. Solve Df(k)

1 5 0 in V1 and Df(k)
2 5 0 in V2 with

which depends quadratically on the number of colloca- Neumann condition ­f(k)
1 /­n 5 ­f(k)

2 /­n 5 c(k) on G. This
tion points. yields f(k)

1 and f(k)
2 (N/N).

A domain decomposition method in which the computa- 4. Generate a Dirichlet condition w(k11) by taking a
tional area is divided into separate subdomains then seems weighted average of the computed solutions:
a natural approach for these computations. The computa-
tional effort per subdomain is small. The efficiency of the

w(k11) 5 g(k)
D f(k)

1 1 (1 2 g(k)
D )f(k)

2 on G.
domain decomposition method is determined by the com-
putational effort which is required to reach equivalence of

5. Repeat procedure steps 1 to 4 (k :5 k 1 1) untilthe decomposed problem with the original problem.
convergence is reached.

3. DOMAIN DECOMPOSITION In the case of more subdomains (and thus more interfaces)
the scheme can be generalized by performing each step in

3.1. Description
the scheme on all subdomains respectively all interfaces
simultaneously. The exchange of information on every in-We consider Laplace’s equation on a domain V with

prescribed boundary conditions. As illustrated in Fig. 2 we terface concerns only the neighbouring subdomains.
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The implications for the numerical method are the fol-
lowing:

• By introducing the interfaces, extra panels are gener-
ated in the BEM. However, because the required memory
per subdomain depends quadratically on the number of
panels, the total required memory is reduced considerably.

• Because the number of panels per subdomain is much
FIG. 3. Definition of the computational domain.smaller, there is also a considerable reduction of required

computation time for determining the source and dipole
coefficients. They have to be determined only at the begin-

In our analysis we will therefore only consider Laplacening of the iterative procedure. Because of the quadratic
problems with homogeneous boundary conditions on thedependency of the required computation time on the num-
outer boundaries. For these problems the interface bound-ber of collocation points, the total costs over all subdo-
ary conditions have to converge to 0.mains still is considerably smaller.

• There is a similar reduction of required computation
4. RESULTStime for solving the linear system of equations for one

iteration step. But because now this has to be done every
In this section the convergence of the iterative procedure

step of the iterative procedure, the total costs for this part
for Laplace’s equation as it occurs in our wave problems

of the method depend on the convergence of the itera-
is analyzed for a number of geometrical simplifications.

tive procedure.

4.1. Results for Rectangular DomainsThe convergence of the iterative procedure is the subject
of the following subsections. Results on reductions of com- As a first simplification of the computational domain,
putational costs will be given in Section 5. we consider a rectangular domain divided into a number

The D/D-N/N scheme is also known as a Neumann– of subdomains in the horizontal direction. In the case of
Neumann preconditioner in the context of domain decom- rectangular subdomains we can solve the Laplace problems
position methods for field discretization techniques. See, analytically and the convergence of the iterative process
e.g., [11]. In this field there is a wide variety of methods. can be analyzed fairly simple.
The explicit formulation used here was also used and ana- To simplify notation we will consider only problems with
lysed by Funaro et al. [7] for a different procedure. Here (homogeneous) Dirichlet conditions on the outer bound-
we restrict ourselves to the D/D-N/N scheme and we keep aries. The Laplace problems originating from water wave
the weight factor constant: g(k)

N 5 g(k)
D 5 g. problems have a Neumann condition on the bottom. For

problems with a horizontal bottom we can, however, reflect3.2. Convergence Analysis
the homogeneous Laplace problem in the bottom to obtain

In the previous subsection we have formulated the a Laplace problem with only Dirichlet conditions. The
scheme for Laplace’s equation with inhomogeneous height of the computational domain of course is twice that
boundary conditions on the outer boundaries. It is, how- of the original one then.
ever, important to realize that we only generate a sequence
of boundary conditions on the interface and that the condi- 4.1.1. Two Subdomains
tions on the outer boundaries are fixed during the iteration

We will investigate the convergence of the D/D-N/Nprocess. We can therefore simplify the description in the
scheme for a Dirichlet problem with two subdomains char-following way.
acterized by the dimensions given in Fig. 3.Because of the linearity of Laplace’s equation, the con-

In the iterative process according to the D/D-N/N-vergence of the solution of the Laplace problems with
scheme, two types of Laplace problems are defined in theinhomogeneous boundary conditions is equivalent with the
subdomains. One with a Dirichlet condition on the inter-convergence of the solution of the Laplace problems for
face (procedure step 1) and one with a Neumann conditionthe error functions f̃(k)

i 5 fuVi
2 f(k)

i , i 5 1, 2, with homoge-
on the interface (procedure step 3). The solutions of theseneous boundary conditions on the outer boundaries:
two problems can easily be obtained by separation of vari-
ables. The convergence of the iterative procedure can then
be expressed in terms of the consecutive solutions.

We will first formulate the solutions on both subdomains

Df̃(k)
i 5 0 in Vi

f̃(k)
i 5 0 on ­Vi\G, i 5 1, 2.

f̃(k)
i 5 w̃ on G.

with a Dirichlet condition on the interface G 5 h(x, z) [
Vux 5 0j. The original homogeneous Dirichlet problem
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c̃n 5 g
­f̃1

­x
uG 1 (1 2 g)

­f̃2

­x
uG

Df̃ 5 0 in V

f̃ 5 0 on ­V

5 (ga1,n 1 (1 2 g)a2,n)w̃n .
is decomposed into problems with the initial Dirichlet
boundary condition w̃ on the interface G: In each even step of the iteration procedure a Neumann

condition is imposed on the interface. The solution process
of this step can be represented by a similar diagram as
above,

Df̃i 5 0 in Vi

f̃i 5 0 on ­Vi\G, i 5 1, 2.

f̃i 5 w̃ on G.
c̃n :5 c9n sin

nf
h

z
We represent the boundary condition on the interface by
the Fourier series |

"

f̃1uG 5 b1,nc̃n

'
||

'

f̃2uG 5 b2,nc̃n

"
|w̃(z) 5 Oy

n51
cn sin Snf

h
zD.

w̃n 5 gf̃1uG 1 (1 2 g)f̃2uGThe solution in domain I then equals

5 (gb1,n 1 (1 2 g)b2,n)c̃n .

f̃1(x, z) 5 Oy
n51

cn

sinh
nf
h

(x 1 a)

sinh
nf
h

a
sin Snf

h
zD, The coefficients b1,n and b2,n are equal to a21

1,n and a21
2,n ,

respectively: calculating (­f̃i/­x)uG for a given f̃iuG is the
inverse operation from calculating f̃iuG for a given (­f̃i/
­x)uG .and we have a similar expression for the solution in domain

Now that we have formulated the solutions of all theII. This leads to the expression for ­f̃1/­x on the interface,
Laplace problems that occur during the iterative process,
we can express the rate of convergence in terms of the­f̃1

­x
uG 5 Oy

n51
cn

nf
h Stanh Snf

h
aDD21

sin Snf
h

zD
(5)

aforementioned parameters. The D/D-N/N scheme can be
represented as

5: Oy
n51

a1,ncn sin Snf
h

zD w̃(0) R c̃(0) R w̃(1) R c̃(1) R w̃(2) R c̃(2) R ....

All interface values of the potential can be expressed inand a similar one for ­f̃2/­x on the interface. In these
terms of the starting value w̃ 5 w̃(0) per Fourier mode:expressions each separate Fourier mode cn sin ((nf/h)z)

is multiplied by a factor a1,n respectively a2,n which is inde-
pendent of the Fourier coefficients cn . w̃(k11)

n 5 «nw̃(k)
n 5 «k

nw̃(0)
n .

To arrive at a Neumann boundary condition c̃ we take
a weighted average g(­f̃1/­x)uG 1 (1 2 g)(­f̃2/­x)uG of We call «n the reduction factor of the nth Fourier mode.
both solutions. An important observation is that the aver- It is independent of k. Therefore the convergence process
aging formula can be applied to the separate Fourier modes can be characterized by this parameter. If u«nu , 1 then the
of (­f̃i/­x)uG . Therefore, we can represent this step in the iterative procedure is convergent for the nth Fourier mode.
iterative procedure for each Fourier mode w̃n separately For the D/D-N/N scheme,
by the diagram

«n 5 (2 1 cn)g2 2 (2 1 cn)g 1 1 5 1 2 (2 1 cn)g(1 2 g),
w̃n :5 cn sin

nf
h

z

where

|
"

­f̃1

­x
uG 5 a1,nw̃n

'

||
'

­f̃2

­x
uG 5 a2,nw̃n

"

| cn 5

tanh
nf
h

b

tanh
nf
h

a
1

tanh
nf
h

a

tanh
nf
h

b
. (6)
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length-to-height ratios in one of the subdomains the D/D-
N/N scheme does not converge for the first modes. When
the length-to-height ratio is larger than 2 for both subdo-
mains, the iterative procedure converges very fast for all
Fourier modes. In one iteration step the difference uf̃1 2
f̃2u will be reduced by a factor smaller than 10210.

We can also see that the set of geometrical configurations
for which the iterative procedure is convergent for g 5
0.49 is approximately the same as for g 5 0.5. However,
for large length-to-height ratios the reduction factors ofFIG. 4. Contour plots for «1 : left graph, g 5 0.50; right graph,
all Fourier modes are approximately equal to the upperg 5 0.49.
bound «y 5 0.0004. The 0-contour line indicates the set of
geometrical configurations for which the reduction factor
of the first Fourier mode equals 0. Nevertheless, the reduc-

In the analysis of this expression we distinguish between tion factors of the higher modes in the same configuration
the case of subdomains of equal length (a 5 b) and the have a positive value and converge much slower.
case of subdomains of unequal length (a ? b). These results can be interpreted as follows: For subdo-

If a 5 b we have cn 5 2 and «n 5 4(g 2 As)2. So the mains with equal length, the solutions generated in the
reduction factor «n is independent of n. If we choose g 5 iterative procedure are symmetric with respect to the
As we find «n 5 0. Thus the exact result is found after boundary condition on the interface. A symmetric averag-
one iteration. This can be explained by considering the ing (g 5 As) annihilates the error made in the initial bound-
geometry of the domain; because of the symmetry we find ary condition.
opposed horizontal derivatives on the interface, which by For subdomains with unequal lengths, the solutions gen-
averaging (g 5 As) directly leads to the correct Neumann erated in the iterative procedure are not symmetric. How-
boundary condition c̃(0) 5 0. ever, this asymmetry is not noticeable when the length-to-

If a ? b then different Fourier modes have different height ratios â and b̂ are large, especially for the higher
reduction factors. For a given geometry the range of cn as Fourier modes. Taking g 5 As then also leads to very fast
function of n is limited. Therefore also the range of the convergence.
reduction factors «n is limited; «n is an increasing function
of n with lower bound «1 5 1 2 (2 1 c1)g(1 2 g) and 4.1.2. Three or More Subdomains
upper bound «y 5 4(g 2 As)2.

The iterative process in the multisubdomain problemMore information about the convergence can be ob-
can be described similar to the iterative process of the 2-tained when we express cn in terms of the length-to-height
subdomain problem in the previous subsection. We willratios of the subdomains. We take
formulate and analyze it for the 3-subdomain problem first.
Consider the domain shown in Fig. 5.

â 5
a
h

, b̂ 5
b
h

. In step 1 Dirichlet boundary conditions are imposed on
the interfaces and Neumann conditions are imposed in
step 3. We can, again, compute the solution of both typesThen we can express cn as
of problems in all subdomains. The difference with the 2-
subdomain problem is now that the inner subdomain has
two inhomogeneous boundary conditions instead of one.cn 5

tanh nfb̂
tanh nfâ

1
tanh nfâ
tanh nfb̂

.
The solution there is the sum of the Laplace problem
with w̃1 (resp. c̃1) as boundary condition and homogenous

For a fixed value of g and varying values of â and b̂ the
contour plots in Fig. 4 indicate the reduction factor «1

for different geometrical configurations. Because of the
symmetry of the plots, the values of the reduction factors
for the contour lines in the upper left parts have not been
indicated. Notice that by taking the multiples (nâ, nb̂),
we can find the reduction factors «n of the consecutive
Fourier modes.

Figure 4 indicates the following: For a large set of geo-
metrical configurations the iterative procedure is conver- FIG. 5. Definition of the computational domain with three subdo-

mains.gent for all Fourier modes if g 5 0.50. For very small
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boundary conditions elsewhere plus the Laplace problem decomposition into M subdomains, M 2 1 interfaces are
present and M 2 1 independent initial Dirichlet conditionswith w̃2 (resp. c̃2) as boundary condition with otherwise

homogenous boundary conditions. must be formulated. During the iteration process they are
transformed and the transformation can be representedAgain, we can describe the iterative process for each

Fourier mode separately. The transformation of the nth by a (M 2 1) by (M 2 1) matrix An for each Fourier mode.
The parameters in this matrix involve the M subdomainFourier-mode w̃(k)

1,n 5 c1,n sin((nf/h)z) on interface G1 and
w̃(k)

2,n 5 c2,n sin((nf/h)z) on interface G2 during the iterative lengths and the weight factor g. To be able to say some-
thing about the convergence, we again consider the caseprocess can be represented by the transformation matrix

An , of subdomains of equal length l and g 5 As.
If M 2 1 is odd (and M $ 4) then the matrix An is

nilpotent with index 0, implying that all eigenvalues are 0.
If M 2 1 is even (and M $ 5) then the matrix An hasSw̃(k11)

1,n

w̃(k11)
2,n

D5SA11,n A12,n

A21,n A22,n
DSw̃(k)

1,n

w̃(k)
2,n

D5: AnSw̃(k)
1,n

w̃(k)
2,n

D.
one eigenvalue «1,n of multiplicity 4 and one eigenvalue
«2,n of multiplicity M 2 4 which both are O(AfS22), with
S 5 sinh ((nf/h)l). The exact condition on l/h for conver-The matrix An can be expressed in terms of coefficients
gence is AfS22 , 1 orsimilar to ai,n and bi,n in the 2-subdomain problem and the

parameter g. The convergence of the iterative process is
determined by the two eigenvalues of the transformation. l

h
. f21arcsinh S1

2DP 0.15.If both eigenvalues «1,n and «2,n lay inside the unit circle
then the iterative process will converge for the nth Fou-
rier mode. These results again show very fast convergence for a

For a general geometrical configuration, the expressions large length-to-height ratio. The symmetric subdivision
for the eigenvalues are very complicated and involve too (M 2 1 is odd) transforms all initial boundary conditions
many parameters to be analyzed easily. Therefore we con- to 0. The asymmetric subdivision (M 2 1 is even) shows
sider the case of subdomains of equal length l and g 5 As. a condition similar to the one for the 3-subdomain problem.
The matrix An then has one eigenvalue «n of multiplicity
2 which is equal to 4.1.3. Three-Dimensional Problems

The analysis and results are also applicable to Laplace
«n 5 2

1
4C(C 2 1)

, problems in three dimensions. If we consider a rectangular
three-dimensional domain with height h and width w with
interfaces in y-z-planes, then we have to deal with Fourier

with C 5 cosh((nf/h)l). The first Fourier mode (n 5 1) series of the form
exhibits the slowest convergence. The condition u«1u , 1
gives the condition on the ratio l/h,

w̃(y, z) 5 Oy
m51

Oy
n51

cm,nsin Smf
w

yD ? sin Snf
h

zD.
l
h

. f21arccosh S1
2

1
1
2

Ï2DP 0.2.
The expressions describing the iterative process in three
dimensions are the same as those in two dimensions with

This condition is similar to the condition for the 2-subdo- nf/h replaced by
main problem.

When the subdomains are not of equal length, the eigen-
values can be determined for some given parameters. For SSm

wD2

1 Sn
hD2D1/2

f.
large length-to-height ratio of all subdomains the choice
of g 5 As leads to very fast convergence on both interfaces
for all Fourier modes. The symmetry-argument used in the This applies to, for example, Eq. (6), but also to the expres-

sions for the eigenvalues in the multisubdomain case.2-subdomain case can be used here as well; because of the
large length-to height ratio the solutions that are generated Therefore the convergence results for the 2-subdomain

problem can be translated directly to three-dimensionalduring the iterative process are determined mainly by the
boundary conditions on the interfaces. The solutions on problems; fast convergence will occur when either the

length-to-height or the length-to-width ratio is large. Theeither side of each interface will be almost symmetric which
explains the fast convergence. convergence is determined by the smallest ratio.

This last result gives the opportunity to handle largeThe matrix representation can also be used in the case
of a decomposition into four or more subdomains. For a three-dimensional problems. The convergence is not af-
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mains is not only expressed in Fourier modes along the
interface, but also in Fourier modes along the upper bound-
ary. The contribution of the latter to the new boundary
condition on the interface will be different on both sides
of the interface and convergence will deteriorate due to
this asymmetry.

4.2.1. Two Subdomains

To have an indication of the sensitivity of the iterative
process for this asymmetry we shall present some numeri-
cal experiments in this section. For the numerical investiga-
tions we define the reduction factors «(k)

D and «(k)
N as the

reduction of the error over the interface in f and ­f/­n,
respectively, in iteration step k. In the numerical methodFIG. 6. Computational domain for nonlinear wave with two subdo-

mains. this is translated into

«(k)
D 5

maxiuf(k11)
1 (xi) 2 f(k11)

2 (xi)u

maxiuf(k)
1 (xi) 2 f(k)

2 (xi)u
, xi [ G,fected by a small length-to-width ratio if the length-to-

height ratio is not too small. If the subdomains in this kind
of problems are still very large then the domain decomposi- and similarly for «(k)

N . The subindices 1 and 2 of f now
tion method can be applied again in the separate subdo- refer to the subdomains. These reduction factors indicate
mains in the y-direction. In this way a checkerboard of the convergence of the iteration process. For rectangular
subdomains is created in which the actual solution of the domains «(k)

D and «(k)
N are equivalent with the reduction

Laplace problems is generated in the small cells of this factor defined in Section 4.1 for single Fourier modes.
checkerboard. The required number of iterations is at most In the following we will look at Laplace problems origi-
the maximum number for the division in one direction nating from one specific nonlinear wave problem and will
times the maximum number for the other direction. investigate the relationship between the angle between

free surface and interface and an average of the reduction
4.2. Results for Domains with Even Bottoms

factors for this geometry.
We consider the computational domain of Fig. 6. TheIn the simulation of nonlinear water waves over an even

bottom, the computational domain in which Laplace’s free surface shape corresponds to a waveprofile of a nonlin-
ear stationary propagating wave and can be calculated ac-equation has to be solved deviates from the rectangular

form because of the disturbed free surface boundary. As cording to the theory of Rienecker and Fenton [13]. The
wave conditions for this wave are: depth h 5 0.50 m, wavethe next simplification we therefore take a rectangular

domain with a local asymmetrical disturbance near the period T 5 1.44 s, wave height H 5 0.185 m, and wave
length l 5 2.82 m. The wave is moderately high; it is equalinterface. We suppose that l/h is large enough to have no

noticeable influence of the lengths of the subdomain on to 60% of the maximum wave height.
In the numerical experiments the interface has beenthe solutions on the interface.

An analysis in which exact or approximating expressions placed at different locations, compared with the position
of the wavetops, in order to obtain different values of thefor solutions are used to characterize the iterative process

is very difficult now. It is, however, clear that the asymme- slope of the free surface at the interface. For these wave
conditions the maximum slope is obtained when thetry near the interface leads to an asymmetry in the solutions

on both sides of the interfaces. This can be explained by wavetop is shifted approximately Akl from the position of
the interface. The starting boundary condition w(1) for theexpressing the solutions in terms of Fourier modes again.

Consider a Laplace problem on a domain with a wave- iteration process was taken equal to 2.0 which is very differ-
ent from the actual solution there for all cases.like disturbance of the upper horizontal boundary and

divided by a vertical interface. See Fig. 6. Homogeneous Two different grid distributions have been taken on the
interface, both with five collocation points. An equidistantboundary conditions are imposed at the outer boundaries

and an inhomogenous one at the interface. If we consider grid (I) and a nonequidistant grid clustering near the free
surface (II).this problem on a domain with the upper boundary re-

placed by the undisturbed upper horizontal boundary then In Fig. 7 the results of these computations are plotted.
The iterative process in the numerical experiments reachedalso an inhomogeneous boundary condition has to be im-

posed there. For this problem, the solution in both subdo- the stop criterion (either f or ­f/­n has difference over



340 DE HAAS AND ZANDBERGEN

FIG. 7. Average reduction factors for some geometries.

the interface smaller than 1027) for all cases in less than 4 4.2.2. Three or More Subdomains
iterations. The average reduction factor « is defined as

If the computational domain of a wave problem is di-
(«(1)

D 1 «(1)
N )/2. The following observations can be made:

vided into three or more subdomains, then convergence
at each interface is influenced by the local asymmetry.• The reduction factor « increases when the slope a of
For rectangular subdomains of equal size we saw that thethe free surface at the interface increases. In fact the reduc-
convergence rate is independent of the number of subdo-tion factor « is approximately quadratic in a.
mains. To check if the same is true for a general wave

• The reduction factor « is smaller for the nonequidistant problem with an even bottom we considered a stationary
grid. Examination of both subdomain solutions indicates wave problem as in the previous section. For computations
that it is determined by the difference in the computed with 12, 20, and 100 subdomains of fixed size, it was seen
unknown (­f/­n, respectively f) in the upper colloca- that with the use of more subdomains, more iterations
tion point. were required, but that it did not exceed a certain limit.

This limit is determined by the iterative process on the• The reduction factor « and the individual reduction
interface with the slowest convergence which correspondsfactors «(k)

D and «(k)
N are very small. Only a few iterations

with the maximum slope for a given wave problem. There-are needed to achieve the accuracy of the BEM-discretiz-
fore, with the use of many subdomains, the CPU time perations.
subdomain is independent of the number of subdomains
and the computational costs depend only linearly on theWe conclude that the iterative process in the numerical
number of subdomains.method converges well. Its convergence rate depends on

the discretization. The optimal convergence rate is
4.2.3. Three-Dimensional Problems

achieved with the most accurate solution near the local
asymmetry of the interface. In wave problems in three dimensions the slope of the

free surface at the intersection with the interface variesFor a given computational domain corresponding to a
nonlinear wave problem, the best choice of a vertical inter- along the interface. To have an indication of the influence

on the convergence rate, we have performed some numeri-face with respect to convergence rate is perpendicular to
the free surface. cal experiments with regular waves and found that the
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TABLE Ireduction factor is related to the maximum slope of the
free surface in the direction perpendicular to the interface. Speedup for the Simulation of Regular Waves
See [9]. For waves propagating not perpendicular to the

Aver. no. CPU timeinterface this slope is smaller than the skewness of the wave
No. of subdomains of iterations (103 s) Speedupitself and convergence of the iterative process is better than

for the corresponding two-dimensional problem.
1 — 12.7 1
2 4.23 13.3 0.97

4.3. Results for Domains in General Wave Problems 4 5.39 5.6 2.3
8 6.09 2.7 4.7

In wave problems over an arbitrary bottom topography 12 6.94 2.2 5.8
the convergence rate can be studied further by taking into 16 6.74† 0.98† —
account the slope at the bottom near the interface. We have
performed no specific numerical experiments to investigate
this. The effect of an uneven bottom has been noticed in
time-domain experiments. It leads to a deterioration of

is required if (and only if) the interfaces drift along withthe convergence rate. These experiments will be pre-
the water particles of the free surface. Still, the waves willsented next.
propagate through the interfaces because the phase speed
of the waves is larger than the velocity of the water par-5. APPLICATION TO TIME-DOMAIN COMPUTATIONS
ticles.

In the present implementation of the domain decompo-5.1. Implementation
sition method this choice (interfaces that drift along with

So far we have investigated the domain decomposition the water particles) has been made. It implies a loss of
method for Laplace problems for a fixed geometrical con- efficiency with respect to the convergence rate of the do-
figuration. In the time-domain computation of propagating main decomposition method. But it has two important
nonlinear water waves, the computational domain changes advantages with respect to parallel computing. First of all
in time and Laplace’s equation for f has to be solved at it gives equal loads in all subdomains and secondly the
every time level. For the efficiency of the domain decompo- transfer of data between different processors from one
sition method in the complete numerical method this has time-level to the other will be minimal. The efficiency of
important consequences. the domain decomposition method in combination with

The free surface shape changes in time according to parallel computing has been studied in [8].
the kinematic free surface condition. For the solution of
Laplace’s equation one is free to choose the position of

5.2. Efficiency
the interfaces. With respect to convergence rates, the anal-
ysis of the previous sections implies that for vertical inter- In [8] we have examined the efficiency of domain

decomposition on the most simple problem of regularfaces the optimal choice is perpendicular to the free sur-
face. With respect to equal loads in the subdomains equally waves over an even bottom. During the simulation waves

enter the computational domain. We shall briefly repeatspaced interfaces are optimal. However, both demands
cannot be satisfied simultaneously. Moreover, the choice these results here.

For a division into 1, 2, 4, 8, 12, and 16 subdomainsof perpendicular connecting interfaces will necessarily lead
to a reorganization of data from one subdomain to the we have measured CPU times and the averaged number

of required iterations for a simulation of 200 time steps.other as the time-marching scheme proceeds. We will clar-
ify this in the following. These results are given in Table I. The computations

were done on a HP workstation.In an Eulerian description of the movement of the grid
of the free surface, the collocation points only move in the From Table I it is clear that more iterations are required

as the number of subdomains increases. However, thevertical direction. To have an organization of data into
subdomains which is fixed in time, the interfaces then have total required CPU time decreases and gives a consider-

able speedup in the case of 4, 8, and 12 subdomains.to be located at fixed horizontal positions. The propagating
water waves will then ‘‘move through’’ the interfaces and In the course of the simulation the number of required

iterations increases due to the wave signal entering thethe free surface will not be rectangular to the interface but
its slope will vary from a minimum value to a maximum subdomains. The asymmetry near the interfaces increases

which slows down the convergence rate. Because of this,value.
We use a Lagrangian description in the present method. in combination with the small length-to-height ratio of

the subdomains, the iterative process for 16 subdomainsThis means that the collocation points move along with
the water particles. In this case no reorganization of data diverges after 197 time steps.
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FIG. 8. Number of iterations during a simulation using 2, 4, and 8 subdomains.

5.3. Example: Waves over an Underwater Bar 90 PC and on a Cray C98 computer. Results on required
CPU time and memory are given in Table II.

As a first example of applying domain decomposition A considerable speedup can be noticed when using a
in a time-domain computation with an uneven bottom PC in the case of four subdomains. For the Cray computer
we will consider the simulation represented in Figs. 1 the speedup is not so spectacular. This is connected with
and 2 which includes an underwater bar. The point of the relatively slower performance of the Cray on memory
interest with respect to wave propagation is the genera- references in two-dimensional arrays representing the
tion of higher frequency components of the incoming source and dipole coefficients. Using domain decomposi-
wave by the underwater bar. See [1] for a description tion these arrays have to be read every iteration step.
of physical tests carried out in a wave flume.

5.4. Example: Simulation of the GenerationWe will first consider the number of required iterations.
of Long WavesFor a division into 2, 4, and 8 subdomains we have

plotted the index of the time step against the number As an example of the application in a large-scale wave
of required iterations averaged over the four time levels problem, the simulation of irregular waves over an uneven
of the Runge–Kutta method. See Fig. 8.

Again it can be seen that as waves enter the computa-
TABLE IItional domain, the number of iterations increases due

Computational Requirements for Differentto the increase of asymmetry near the interfaces. The
Number of Subdomainsincrease in the case of eight subdomains becomes so

large that it exceeds the imposed maximum of 20 itera-
No. of CPU time CPU time Required memory

tions after 234 time steps. Another interesting observation subdomains on PC (h) on C98 (min) (MWord)
is that the variation in the case of two subdomains is

1 21.51 22.00 1.729larger than in the case of four subdomains. Averaged
2 19.51 20.16 1.289over the total simulation remarkably less iterations
4 7.84 13.60 1.088are required. 8 — — 1.049

These simulations have been performed on a Pentium/
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FIG. 9. Computational domain of a large-scale wave problem with 16 subdomains.

bottom, thereby generating long waves, is shown. See 6. CONCLUSION
Fig. 9.

For the solution of Laplace’s problem in geometriesIn this simulation the original computational domain
related to water wave problems, a domain decompositionconsisting of 1930 panels, was divided into 16 subdomains,
method is proposed which is applied in combination withgiving a problem with 2080 panels. Memory requirements,
a higher order boundary element method. For a length-however, dropped from 11.70 MWords to 2.43 MWords.
to-height ratio of the subdomains which is not too small,The computation was done for 1775 time steps simulating
the convergence is fast. With the use of a panel methoda period of 355 s. It took about 2 h on the Cray computer.
to solve practical wave problems it is possible to achieveBecause of the large CPU time requirements no simula-
considerable reductions of required memory and a speeduptions with less subdomains or with a larger computational
of the computations. Besides that, it is possible to increasedomain were performed.
the length of the computational domain with only a linear
increase in the computational costs.5.5. Three-Dimensional Problems

In Section 4 it was already mentioned that convergence
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